Cell Size Error in Stochastic Particle Methods for Coagulation Equations with Advection

نویسندگان

  • Robert I. A. Patterson
  • Wolfgang Wagner
چکیده

The paper studies the approximation error in stochastic particle methods for spatially inhomogeneous population balance equations. The model includes advection, coagulation and inception. Sufficient conditions for second order approximation with respect to the spatial discretization parameter (cell size) are provided. Examples are given, where only first order approximation is observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A Stochastic Weighted Particle Method for Coagulation-Advection Problems

A spatially resolved stochastic weighted particle method for inception–coagulation– advection problems is presented. Convergence to a deterministic limit is briefly studied. Numerical experiments are carried out for two problems with very different coagulation kernels. These tests show the method to be robust and confirm the convergence properties. The robustness of the weighted particle method...

متن کامل

Convergence of stochastic particle systems undergoing advection and coagulation

The convergence of stochastic particle systems representing physical advection, inflow, outflow and coagulation is considered. The problem is studied on a bounded spatial domain such that there is a general upper bound on the residence time of a particle. The laws on the appropriate Skorohod path space of the empirical measures of the particle systems are shown to be relatively compact. The pat...

متن کامل

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise

We compare Wiener chaos and stochastic collocation methods for linear advectionreaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic colloca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014